If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-120x+200=0
a = 3; b = -120; c = +200;
Δ = b2-4ac
Δ = -1202-4·3·200
Δ = 12000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12000}=\sqrt{400*30}=\sqrt{400}*\sqrt{30}=20\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-20\sqrt{30}}{2*3}=\frac{120-20\sqrt{30}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+20\sqrt{30}}{2*3}=\frac{120+20\sqrt{30}}{6} $
| 4/3h=28 | | 5=1/5g | | 7x-5=98 | | 1/7v=7 | | 14z-13z=4 | | 2(w+90)=300 | | (1/3)(4a+1)=((1/2)a) | | 16r-13r=15 | | 2(x+4)=4x+3-2x-5 | | 10=1/10g | | 2x-5(x-4)=-8+3x+10 | | 5/8b=45 | | 9=6p-7p | | 7p−6p=9 | | x-16=1/3x | | 12=3y-6y | | 12=6y−3y | | 6y−3y=12 | | 12=2q-3q | | 3q−2q=12 | | 29(y+6)=957 | | 144=r/13+124 | | 144=r/13+ 124 | | 66+31k=159 | | y/8=5y= | | 3/8t=36 | | 99=9+3x | | -16x^+192x+32=0 | | 2/3x=x-4 | | 23−4u=11 | | -3(w-95)=78 | | 3(x-4)+x=8 |